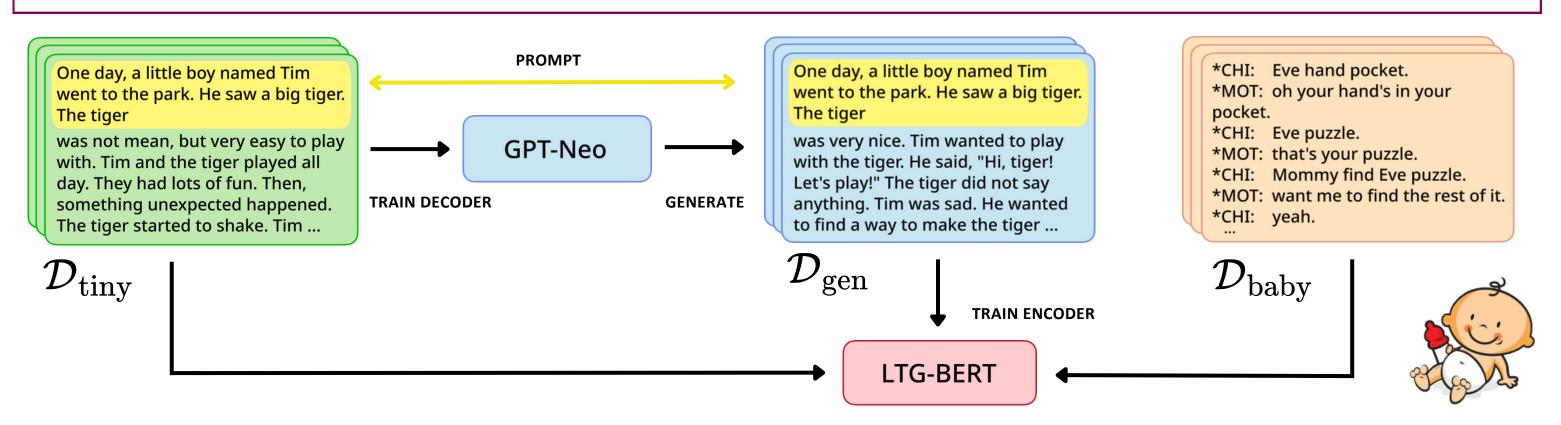
BERTtime Stories: Investigating the Role of Synthetic Story arxiv Data in Language Pre-training GitHu

Nikitas Theodoropoulos, Giorgos Filandrianos, Vasilis Lyberatos, Maria Lymperaiou, Giorgos Stamou National Technical University of Athens,



Main research questions

Q1: Can data augmentation with synthetic story data help pre-training?

Q2: Can LMs with small training datasets generate high quality stories?

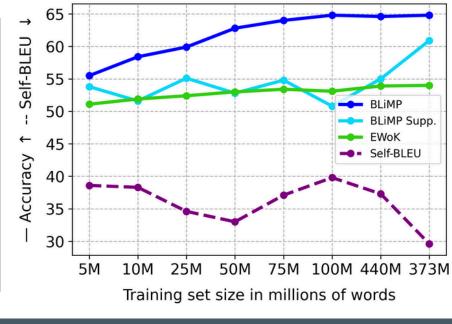
Decoder Training

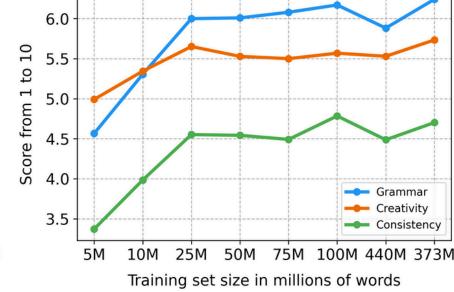
Use the **TinyStories** dataset (Dtiny) — a collection of short and simple stories, train GPT-Neo models for **Data Augmentation**. Train on subsets of 50M (Strict) and 5M (Strict-Small).

Data Generation

For each story in Dtiny truncate to 15%-30%, use GPT-Neo model to generate an alternate completion.

Encoder Training


Combine: TinyStories (Dtiny),
Generated Data (Dgen) and a
subset of the BabyLM dataset
(Dbaby) → train LTG-BERT model


How much data is enough for good generations?

Train GPT-Neo models on various Dtiny sizes

- Evaluate BLiMP, BLiMP Supp., EWoK
- Evaluate Self-BLEU (diversity), LLM-eval: *Grammar, Creativity, Consistency* with plot

25M - 50M words are enough!

STRICT-SWALL												
Model	Training Data	Total	BLiMP	Supp.	EWoK	GLUE	Avg.					
LTG-BERT	baby-10M	10M	60.6	60.8	63.1	60.3	61.2					
BabyLlama	baby-10M	10M	69.8	59.5	50.7	63.3	60.8					
LTG-BERT (ours)	baby-10M	10M	62.8	63.7	66.2	71.0	65.9					
	tiny-10M	10M	59.8	54.2	67.0	67.0	62.0					
	+gen-greedy	20M	58.7	57.8	63.8	67.1	61.9					
	baby-5M + tiny-5M	10M	62.6	60.7	66.6	71.2	65.3					
	+gen-greedy	15M	62.1	60.2	65.5	70.6	64.6					
	+gen-nucleus-1	15M	62.5	62.3	63.9	69.5	64.6					
	+gen-nucleus-1 † \star	15M	63.2	59.3	65.5	71.1	64.8					
	+gen-nucleus-5	33M	62.4	60.1	65.8	69.4	64.4					
	+gen-nucleus-10	56M	61.0	58.4	65.3	69.5	63.6					

STDICT_SMAI

	SIRICI											
	Model	Training Data	Total	BLiMP	Supp.	Ewok	GLUE	Avg				
	LTG-BERT	baby-100M	100M	69.2	66.5	65.7	68.4	67.5				
	BabyLlama	baby-100M	100M	73.1	60.6	52.1	69.0	63.7				
		baby-100M	100M	64.0	67.6	62.8	74.0	67.1				
		tiny-100M	100M	61.2	63.2	63.1	70.6	64.5				
		+gen-greedy	200M	61.1	59.6	63.8	69.1	63.4				
	LTG-BERT	tiny-50M + baby-50M	100M	65.5	65.6	62.5	71.0	66.2				
	(ours)	+gen-greedy	150M	66.6	63.3	65.0	71.8	66.7				
	(ours)	+gen-nucleus-1∗	150M	65.6	65.0	64.6	72.7	67.0				
		$+$ gen-nucleus-1 \dagger	150M	65.2	63.5	64.3	72.6	66.4				
		+gen-nucleus-5	350M	65.4	64.4	61.2	69.8	65.2				
		+gen-nucleus-10	600M	63.7	63.3	64.5	69.5	65.3				

- † = balanced training
- \star = submitted model
- BabyLM 10M and 100M have best performance
- Adding more synthetic data hurts performance
- Nucleus and Greedy sampling resulted in some gains:
 - Best BLiMP score (Strict-Small)
 - Best BLiMP and EWoK scores (Strict)

- Synthetic story data offered some modest gains
- Overall, adding generated data hurts performance
- High generation quality underscores potential

